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Ab&mct. The a-ester gmup of N-protected didhyl aspntt& (la) OT diethyl glutamate (lb) wan selectivety reduced 
usiag diisobutylahueinum hydride @IBALl+) in the pmmce of a litbii bialkylpboapbo (2) to afford N- 
proteaed Y-amino-G-~ dicarboxyhtes (4). 

a-amino acids constitute a valuable natural source of chiral substrates for use in asymmetric 
~yntheses.~,~ These natural L-a-amino acids have been employed as synthetic reagents using a diverse array 
of reactions. However, syntheses utilizing dicarboxylic acids such as sspartic acid or glutamic acid are 
mtly complicated due to the presence of the two diff&nt carboxyl groups. Therefore, selective 
protection of the two carhoxyl groups is oflen necessary. For example, a strategy for the synthesis of non- 
pmtcinogcnic a-amino a&s starting Born L-ghrtamic acid3 or I_.-aspartic acid4 encompassed selective 
esterification of the two carboxyl groups prior to a B- or 7-mgioselective Aldol-reaction. This regioselectivity 
was due to the different rwctivities of the a-ester, and B- or y-ester, moieties which was attributed to the 
different steric effects induced by the respective ester groups. 

An efficient methodologyB for the synthesis of chiral N-protected y-aminoa,~unsaturated 
carboxylates was recently developed. This one-pot pmeedure afforded the target compounds starting from 
chiral N-protected a-amino acid esters without loss of optical purity. This methodology has now been applied 
to Ldiethyl aspartate (la) and Ldiethyl glutamate (lb) (Scheme 1) which af%rds the y-amino-a,& 
m dicerboxylates (4)8 as the exclusive, or major, product, respectively. Some examples that ilhtstrate 
this maction are shown in Table 1. Thus, reaction of diethyl N-methoxycsrbonylaspa&& (la, R = Me) with 
DIBALH in the presence of lithium ~~ylp~sphon~e gave 4a as the exclusive product resulting from 
reduction and olefination of the a-ester moiety. Similar reactions employing diethyl N- 
~koxyc~nylgl~~ (1 b, R = Me, f-Bu) gave 4&d as the major product together with the minor isomer 
3 resulting from reaction of the y-ester group (ratio 43 2 13:X). The larger N-r-buto~~nyl protecting 
group decreased regioseleetivity (4d:3d +Z 13:l) relative to the smaller N-methoxycarbonyl substituent (4b:3b 
2 40: 1). in a typical procedure, a solution of r-butyl lithium in hexane (3.3 mL of a 1.7 M solution, 5.6 mmol) 
was added dropwise to a solution of triethylphosphonoacetate (5.5 mmol) in THF (30 mL) at -78°C. After 
stirring for 30 min, a solution of diethyl N-methoxycarbonylaspsrtate (la, 1.24 g, 5.0 mmol) in THF (5 mL) 
and then a solution of DIBALH in toluene (6 mL of a 1.5 M solution, 9.0 mmol) were added. The resulting 
mixture was stirred for 5 hr at -78°C prior to warming to 25°C. Water (10 mL) and then 2N hydrochloric acid 
(10 mL) was added, the organic layer was sepam&Z and the aqueous mixture was extracted with ethyl acetate 
(3 x 50 mL). The combined organic fkctions wm washed with saturated brine, the organic fkaction was dried 
(bigSO,& filtered, and the solvent was removed in vacua. The product was purified by silica gel flash column 
chromatography to yield the 7-amino-a,$-m diuuboxylate (4a. 0.85 g, 62%). 
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Table 1. Synthesis of Dialkyl N-alkoxycarbonyl-c+unsaturated dicarboxylates (3,4). 

Entry 1 2 

1 ” = 0, R = Me R’ = Et 

2 n = 0, R = Me R’ = Et 

3 n= l,R=Me R’ = Me 

Ratio 4:3 Yield 4, % 

loo:0 62 (4a) 

> 4O:l 74 (4bsa) 

> 2o:l 58 WC) 

4 n = 1, R = r-h R’ = Et > 13:l 68 14dl 

y-Amino-alp-unsaturated dicarboxylates (4) are likely formed by the Wittig-Homer reaction of the 
intermediate aluminoxy acetal (A) resulting from the regioselective reduction of the a-ester group of 1, 
whereas the isomer 3 likely arises via the intermediate aluminoxy a&al (B) resulting from reduction of the y- 
ester group of 1 (Scheme 2). Although the low temperature reduction of an ester subatituent to an aldehyde 
using DIBALH is a routine reaction, it is diffkult to achieve regioslective reduction when more than one ester 
group is present. One rare example of this controlled chemoselectivity by a steric effect involved a methyl 
ester which was selectively reduced, in the presence of a t-butyl ester, to the corresponding aidehyde using 
DIBALH.7 

In the case of the diethyl dicarboxylates (I), the a-ester group is more stericaliy hindered than the p 
(la) or y- (lb) ester group. The regioseiective reduction of the a-ester group of h-b using DIBALH may be 
explained by the chelation-controlled transition states C and D (Figure 1). Since aluminum has a large atomic 
radius, it is more likely to form a quasi-five-membered ring chelation complex C, which would result in 
preferential reduction of the a-ester group via intermediate aluminoxy acetal A, relative to a quasi six- or 
seven-membered ring chelation complex D that would result in the reduction of the p- (la) or y-ester (lb) 
group to form the intermediate aluminoxy acetal B. 
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Figure 1. Quasi-ring chelation complexes. 
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To our knowledge, this is the first example8 for the regioselective reduction of one ester group in the 
presence of a second ester group using DIBALH. This facile regioselective reduction of the a-ester moiety 
appears to be quite general. For example, a competition experiment showed that the a-amino ester (5) was 
selectively rcduce.d to provide the y-amino-@-unsaturated ester (7) in the presence of a second ester 
compound (6) (Scheme 3) which increases the synthetic utility of this reaction. Furthermore, the y-lactam (9) 
which is a useful synthetic intermediates, was synthesized in two steps from diethyl N- 
metboxycarbonylasparbk (1 a) in 54% overall yield (la + 4a. 62%, 4~ + 9,87%) as illustrated in Scheme 4. 
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